On the Relation between Sensitivity and Accuracy in In-Context Learning

Yanda Chen¹, Chen Zhao^{2,3}, Zhou Yu¹, Kathleen McKeown¹, He He²

¹Columbia University, ²New York University, ³NYU Shanghai

1.0

0.8

Topic Introduction - Few-shot Learning

- Def: quickly learns a *new* task with *few* labeled examples

```
x_1: "I like the movie!", y_1 = Positive \bigoplus
x_2: "Horrible movie!", y_2 = Negative \bigoplus
Adapt
```

Finding #2: Sensitivity is negatively correlated to accuracy.

AG	News													
	Perturbation Set ★ InstH ● InstA ▲ ExOrd	Model	Perturb Set	AG News	ARP	DBP	Emo	CARER	WikiQA	YAT	LYR	YRFS	MR	Avg
		GPT-J-6B	INSTH	-0.49 (0.04)	-0.55 (0.02)	-0.55 (0.10)	-0.28 (0.11)	-0.31 (0.01)	$\begin{array}{c} 0.04 \\ (0.10) \end{array}$	-0.35 (0.02)	-0.61 (0.09)	-0.27 (0.04)	$\left. \begin{array}{c} -0.49 \\ (0.02) \end{array} \right $	-0.39 (0.02)
			InstA	-0.40 (0.02)	-0.39 (0.03)	-0.65 (0.08)	-0.27 (0.12)	-0.31 (0.04)	-0.18 (0.01)	-0.55 (0.01)	-0.41 (0.05)	-0.25 (0.03)	$\left. \begin{array}{c} -0.39 \\ \scriptscriptstyle (0.03) \end{array} \right $	-0.38 (0.01)
			ExOrd	-0.38 (0.08)	-0.46 (0.02)	-0.82 (0.02)	-0.17 (0.06)	-0.32 (0.06)	-0.09 (0.05)	-0.51 (0.07)	-0.52 (0.03)	-0.26 (0.04)	$\left. \begin{array}{c} -0.47 \\ (0.07) \end{array} \right $	-0.40 (0.03)
		GPT-NEO-2.7B	InstH	-0.49 (0.04)	-0.57 (0.04)	-0.53 (0.14)	-0.09 (0.12)	-0.36 (0.04)	-0.36 (0.03)	$\begin{array}{c} -0.25 \\ \scriptscriptstyle (0.02) \end{array}$	-0.54 (0.09)	-0.21 (0.07)	$\left. \begin{array}{c} -0.48 \\ \scriptscriptstyle (0.03) \end{array} \right $	-0.39 (0.02)
			InstA	-0.39 (0.03)	-0.22 (0.02)	-0.61 (0.13)	-0.09 (0.06)	-0.36 (0.05)	-0.10 (0.03)	-0.41 (0.03)	-0.19 (0.07)	-0.17 (0.07)	$\begin{array}{c}-0.28\\(0.05)\end{array}$	-0.28 (0.02)
			ExOrd	-0.27 (0.06)	-0.48 (0.06)	-0.76 (0.04)	-0.21 (0.12)	-0.29 (0.06)	-0.33 (0.04)	-0.29 (0.14)	-0.46 (0.08)	-0.14 (0.04)	$\begin{array}{c} -0.28 \\ (0.07) \end{array}$	-0.35 (0.04)
	5 - C - C - C - C - C - C - C - C - C -													

- **Predict** x^{target}: "The movie is boring.", y^{target}:?
- Why we care?
 - save annotation efforts
 - human-like Al

In-context Learning (ICL)

 $I \circ x_1 \circ y_1 \circ x_2 \circ y_2 \circ x^{\text{target}} \longrightarrow \hat{v}^{\text{target}}$

What is the sentiment of this review? I like the movie! Positive. Horrible movie! Negative. This movie is boring. _____ -> Negative

We study the **Sensitivity** of ICL

What do we measure?

Magnitude of the changes in the predicted label when the prompt is **perturbed**. $\frac{1}{|P|} \sum_{p' \in P} \mathbf{1}[f(x, p) = f(x, p')]$

What do we perturb?

- instruction wording
 - human-written perturbation (InstH)

Pearson correlations (std is shown in parenthesis)

Application: Sensitivity-based Selective Few-shot Prediction (SenSel)

Goal: Abstain on examples that the model is *not* confident about => avoid presenting wrong predictions to users

Score model confidence C on each example, abstain on examples where $C < \gamma$. γ controls the trade-off between coverage and accuracy.

SenSel: C = - prediction's sensitivity to prompt perturbations.

- automatic perturbation (InstA): word dropout & paraphrase
- few-shot example ordering (ExOrd)

Data & Models?

- Models: GPT-J-6B, GPT-Neo-2.7B
- Dataset: 10 classification datasets (sentiment, emotion, topic, question-answering)

Finding #1: Sensitivity is underestimated due to label bias.

- Label bias: LMs assign a higher probability to a specific label [Zhao et al., 2021]
- => appear to make stable predictions under prompt perturbations
- How does ICL sensitivity change after addressing label bias?
- Prototypical Calibration [Han et al. 2022]: cluster predictions into gaussian mixtures.

Instruction: "Is the comment positive?" x_1 : "Good movie!" y_1 : "yes" *x*₂: "*Bad movie!*" *y*₂: "*no*"

Metric: Area under the F1-Coverage curve (AUC) - measures the average F1-score at different coverage rates.

Baselines:

- MaxProb: C = maximum output probability over the labels

ICL sensitivity is **99.0%** higher after addressing label bias.

- Entropy: C = - entropy of the output probabilities over the labels

SenSel outperforms baselines (by +3.5 AUC points on GPT-J-6B) and +3.2 AUC points on GPT-Neo-2.7B)